
PCIe, USB and Ethernet
Serial Devices

Eamonn Walsh
Technical Director
Brainboxes Ltd
Liverpool
Great Britain

Contents

• Overview

• Background To Serial Communications

• Latency

• The Software Challenge

• PCI and PCI Express to Serial

• USB to Serial

• Ethernet to Serial

• Summary

• Recommendations

Award Winners

• European Manufacturer
of the Year 2005

• UK Manufacturing
Institute: Champions of
Best Practice and Small
Business of the Year
2007

• Merseyside Exporter of
the Year 2005

My Data, Any Connection.

• Hardware Challenge as PC Platform Evolves:

• To deliver the data from the serial device over
whatever physical connection is possible.

• Long gone are the days when we were limited by
what ports we had on our individual computer.
– As long as we have at least one means of getting

our PC connected to a network we want access to
our devices and their data.

• Connection Agnostic Interface
– Serial data any time, on any device, over any

connection, wired or wireless, local or networked

– As serial data interface devices become part of the
infrastructure- our job is to make the connection,
configure and control our device using whatever
access device we happen to have in our hands

• So hardware vendors must deliver on these
market demands by providing a wide range of
Serial to “Other” connection types.

Ways to Connect to Serial

• There are Four ways of adding serial communications to your
computer.

• Connected directly in PC using PCI, PCI Express

• Connected over the USB

• Connected via Ethernet

• Connected via Wireless eg Bluetooth

• There are advantages and disadvantages of each interface
method.

• We will look at first 3 interface types considering compatibility
issues, latency and response times

• Latency plays a big role in performance and compatibility
Latency= the time it takes for the PC to respond to a stimulus,
eg data, handshake line change, loss of signal etc

• Wireless connections, issues regarding throughput & data
security will not be discussed here

• Brainboxes provides a robust compatible connection using all
these interfaces

Contents

• Overview
• Background To Serial Communications

– MSDOS
– ISA Cards
– Windows 3.1
– ISA to PCI Transition
– Serial Port Improvements
– Validation of Platform

• Latency
• The Software Challenge
• PCI and PCI Express to Serial
• USB to Serial
• Ethernet to Serial
• Summary
• Recommendations

MS DOS

• In The early 1980s when the IBM PC was first
introduced IBM and other companies quickly
made RS232 serial communications add
on boards available to allow the connection
of the PC to external devices.

• The PC was generally running the MS DOS
operating system and programs were coded
so that the program talked directly to
whatever hardware resources they needed.
Standard Serial ports were always expected to
be at fixed i/o addresses and wired to certain interrupts.

• COM1: ADDRESS=03F8 hex IRQ=04

• COM2: ADDRESS=02F8 hex IRQ=03

• MSDOS could only run one application program at a time and an
unwritten assumptions of all these programs was that they had
exclusive use of and immediate unrestricted access to all PC system
resources

ISA Cards

• ISA Cards 1981-1997
• Serial Port Resources are set by the user using DIP switches and

jumpers
• ISA no plug and play- the add in card had no mechanism for

automatically informing the PC system what resources it needed.
• The PC had no mechanism for allocating resources to add in cards,

everything was down to the user knowing exactly what was in the PC
and being able to personally ensure that one device in the PC does
not clash with any other.

Windows 3.1
• With the tremendous success of Windows 3.1 in early 1990s programmers

started to become familiar with writing code so that application programs
talked to system Device Drivers that presented a standard API to the outside
world. This Windows Device Driver then managed the actual communications
to the serial ports hardware.

• Windows 3.1 was a system that implemented cooperative multitasking and so
was capable of running multiple well behaved application programs at the
same time provided they accessed the system resources strictly via the
system Device Drivers through the Microsoft provided Application
Programming Interfaces- Device Driver APIs

• It was necessary for the user to tell Windows what hardware resources serial
port add in cards needed by entering data using the System in Control Panel.

• Though the Device Drivers in principle allowed serial ports at any otherwise
unused i/o address and interrupt in practice COM1: and COM2: used exactly
the same values assumed by MSDOS programs. This greatly eased the
transition from MSDOS to Windows serial applications

ISA To PCI Transition

• ISA to PCI Change

• In the late 1990s the slots on new PC motherboards underwent a
gradual change from being ISA only through a mix of ISA and PCI to
being completely PCI slots.

• PCI cards were configured electronically as the PC booted up. The
card requests resources from the PC which responds by allocating it
i/o address and interrupt. Typically the resources allocated do not
correspond to those traditionally used by ISA cards.

• Old MSDOS applications running in a DOS window inside Windows
broke mainly because they expected to talk to serial ports at
particular i/o addresses and interrupts.

• Huge effort was invested by the industry and customers in migrating
their code to work with PCI based PCs. However issues to do with the
unwritten assumptions of these programs that they had exclusive use
of and immediate unrestricted access to all PC system resources
remained hidden in the program code.

Serial Port Improvement

• The burden of implementing the Windows OS on the CPU where the
application programs only actually run during small time slices meant that the
PC could no longer do real time control of the serial port. To overcome this
extra features were added to the serial port chip- the UART- to lower the
burden on the PC the first one being 16 byte transmit & receive FIFO buffers.
The data sent and received by Windows to the serial port is no longer a
character at a time but is now transferred in FIFO size packets. This trend
continues to this day with the following features being implemented in state
of the art UARTs.
– FIFO size grows from 16 to 32 to 64 to 128 and 256 bytes
– Automatic flow control RTS/CTS or DTR/DSR implemented in hardware
– XON/XOFF flow control in hardware
– RS485 Half Duplex Autogating
– DMA transfers of data to and from the serial port.
– Baud rates higher than 115,200 and non standard baud rates

• Today the way an application communicates to a serial port has become
completely uncoupled from the underlying hardware that actually implements
the serial interface. Instead the Application talks to the Windows API in a
standard manner, the serial port hardware manufacturer provides a device
driver that interfaces to Windows OS and repackages the transactions in a
manner that is compatible with the actual serial implementation

Validation of Platform

• As in the days of DOS, it has proved that there are often many hidden
assumptions in code of Windows application programs about the
underlying hardware implementation and performance. This results in
programs “breaking” when being moved from one version of Windows
to another or with different firmware versions or due to changes to
the external network system.

• Timeouts in programs that allow an application to recover gracefully
when the communications system fail often cause errors to be
incorrectly reported when the serial port hardware is changed to one
with longer inherent latency.

• These issues may be exacerbated by the use of multi core CPUs in the
PC since the context change time from one core to another adds its
own latency.

• To mitigate against these issues system suppliers often go through a
long costly period of validating a given solution, characterising its
operational performance in a large number of defined test cases.

• Sometimes this merely results in a making a particular system work
because of tweaking of parameters to match the quirks of the various
devices involved, preventing platform evolution over time.

Contents

• Overview

• Background To Serial Communications

• Latency and Response Times
– What Is Latency

– Latency Variations

– Why Is It An Issue

• The Software Challenge

• PCI and PCI Express to Serial

• USB to Serial

• Ethernet to Serial

• Summary

• Recommendations

Latency
• What is Latency? And why is it such an issue?

• Consider a man’s journey home. The bus journey only takes 10
minutes but buses run only once every hour.

• Q: The man leaves work at 5pm at what time will he get home?

• A: If the workman leaves work at 5pm and immediately catches a
bus he will be home at 5:10pm.
But if he has just missed the previous bus he will have to wait an
hour for the next bus and be home at 6:10pm.

• His wife at home knows that if she has to wait more than 1hr 10mins
for him to travel home then something has gone wrong.

• A return journey can take from 20min to 2hrs 20min

What is Latency?
• Latency is a measure of time delay experienced in a system. In the

man’s journey the latency is between 10mins and 1hr 10mins. His wife
will happily wait 1hr 10mins for him but after this his time is out.

• Typical latency

• PCI card <1ms 1 char time at 9600 baud

• USB ~16-75ms 16-75 char times

• Local network 5-20ms 5-20 char times

• Internet =100-1,000ms 100 – 1,000 char time

1 milli sec=

1 char times
at 9600 baud

Latency Variations

• Latency is not a fixed quantity, it varies, in our example it has a two
values that are a factor of 7 in range, 10mins or 1hr 10mins.

• Often other external influences also effect the latency. Imagine that
there is a lot of traffic on the road and the bus journey may no longer
take 10 minutes.

• Bus systems such as USB and Ethernet share the interface with other
connected devices just as the workman’s bus shares the road with
other traffic. The quoted latency for USB and Ethernet assume no
delays due to external traffic on their buses due to other devices.

• User serial programs have to be written to take account of real world
latency

Why is Latency An Issue?

• Q: Why is latency such an issue? The different serial interfaces used in
a PC have very different characteristic latencies. Programs developed
and proved using one interface type often are expecting vastly different
timeouts to those found when using other interfaces.

• Timeouts are used in serial communications programs to detect errors
or failures such as a device going dead. After a timeout the program
signals a failure which often requires user intervention.

• The response time of a system to a stimulus involves a return journey
to a device and is thus directly dependant on latency

• Latency effect response times and programs often have inbuilt
assumptions about expected response times, and signal success or
failure depending whether these response times are met.

Contents

• Overview
• Background To Serial Communications
• Latency and Response Times
• The Software Challenge

– Device Driver Development
– Layers Between Application and Physical Serial Port
– Device Driver Compatibility
– Hidden Assumptions
– Installation and Configuration
– Traditional COM Port Interface.

• PCI and PCI Express to Serial
• USB to Serial
• Ethernet to Serial
• Summary
• Recommendations

The Software Challenge

• Software Challenge: users data over any connection.

• #1: To present the data in a uniform manner to the
computing device, that is simple to use, easy to configure,
is secure and reliable.

• #2: To present the data as if it has a connection that is as
robust as a point to point cable, no matter what the
underlying physical connection,
– whether the connection is transient, local or remote, shared or
dedicated, wired or wireless.

• Connection Agnostic Interface
– Software must work the same no matter what the underlying
connection

• So hardware vendors must deliver on these market
demands

Device Driver Development

Users Application

Windows API

Open 9600,N,8,1

Tx Data
Status

Rx Data

USB
Transport
Driver

USB
Serial Device

PCI Express
Serial Device

Brainboxes Device Driver

Users Application

Windows API

Open 9600,N,8,1

Tx Data
Status

Rx Data

USB
Transport
Driver

USB
Serial Device

PCI Express
Serial Device

Brainboxes Device Driver

• Serial device manufacturers like Brainboxes
base their Device Drivers upon code and
recommendations in the Microsoft Device
Driver Kit- the DDK.

• How complete an implementation a device
Driver is and how compatibly it works varies
from one manufacturer to another.

• With over 20 years experience of designing,
manufacturing and supplying serial port
products Brainboxes have developed an
extension set of test cases which we
continuously run on device driver code as it
being written, so ensuring we have the
highest quality code possible.

• Brainboxes always submit our driver code to
Microsoft WHQL – the Windows Hardware
Quality Labs and obtain the coveted Windows
Logo Approval.
Brainboxes have done so since the earliest
days of the HCL – Hardware Compatibly List-
instigated with Windows NT in the late 1990s.

Layers Between Application and
Physical Serial Port

Users Application

Windows API

Open 9600,N,8,1
Tx Data

Status
Rx Data

Ethernet
Transport
Driver

USB
Transport
Driver

Ethernet
Serial Device

USB
Serial Device

PCI Express
Serial Device

Brainboxes Device Driver

Device Driver Compatibility

Users Application

Windows API

Open 9600,N,8,1

Tx Data
Status

Rx Data

USB
Transport
Driver

USB
Serial Device

PCI Express
Serial Device

Brainboxes Device Driver

Users Application

Windows API

Open 9600,N,8,1

Tx Data
Status

Rx Data

USB
Transport
Driver

USB
Serial Device

PCI Express
Serial Device

Brainboxes Device Driver

• Depending on the physical serial port
interface and the actual serial hardware the
amount of work needed to implement a
device driver varies.

• For ISA serial ports based upon standard
16550 UART chips all that is required is to
pass two parameters to Microsoft’s own serial
port device driver code. This gives the highest
level of compatibility since there is no non
Microsoft code involved.

• With PCI and PCI Express products a similar
process will work.

• However UARTs have had many features
added to them to help the CPU cope with the
increasing burden of a PC running a pre
emptive multi tasking Windows OS. The
Microsoft DDK code does not support these
features and so serial port manufacturers like
Brainboxes must provide their own Device
Driver code to implement the now necessary
serial port UART features like Automatic
handshaking and deeper than 16 byte FIFOs.

• How well these Device Drivers are written is a
clear differentiator for Serial port companies.

Device Driver Compatibility

Users Application

Windows API

Open 9600,N,8,1

Tx Data
Status

Rx Data

USB
Transport
Driver

USB
Serial Device

PCI Express
Serial Device

Brainboxes Device Driver

Users Application

Windows API

Open 9600,N,8,1

Tx Data
Status

Rx Data

USB
Transport
Driver

USB
Serial Device

PCI Express
Serial Device

Brainboxes Device Driver

• There is a clear one to one correspondence
on Windows API calls when using ISA or PCI
Express interfaces even when using highly
advanced UARTs. When implementing a
Device Driver for Serial Ports that are
attached on the other side of a transport link
like USB or Ethernet involves dealing with
many issues. Achieving compatibility on the
Windows PC is a non trivial task since it not
only demands an in-depth understanding of
the Windows DDK structure but also involves
judgement calls in what course of action to
follow when status or data is not
immediately available and has of necessity
to come across a link some distance away in
time and space.

• This brings up two main areas of
incompatibility that causes applications to
fail or work inconsistently:-
1. Wrong return values passed back to Windows

and the application due to misunderstanding
the serial API

2. Hidden assumptions in the code regarding
response times etc

• Hidden assumptions prove hardest to debug

Hidden Assumptions
• Much of the programming model of original ISA interface has been

unconsciously carried forward into later written Windows application
code.

• Assumption#1: That the serial device is the exclusive use of the
Program on the Host PC.
– True PCI, USB False Ethernet

• Assumption#2: Latency The serial interface is immediately able to
provide back to the PC application status information regarding eg
the CTS/DCD/DSR/RI handshake inputs of the serial port
– True PCI False USB, Ethernet

• Assumption#3: Latency Data transmitted and handshake output line
status can effected instantaneously
– True PCI False USB, Ethernet

• Assumption#4: Latency Instructions to change the Baud rate etc or
to flush tx/rx data buffers are effected instantaneously
– True PCI False USB, Ethernet

• Assumption#5+ Programs tweaked to work with particular devices in
typical setups will work even with PC platform changes, versions of
Windows, different serial device revisions and external end user
equipment.
– True False PCI, USB, Ethernet

Installation and Configuration

• In the past how a port was installed and
configured was highly dependant on the
interface bus used and the preferences of the
device manufacturer.

• As the Windows UI has matured it is
increasingly likely that a common unified
method based upon underlying Microsoft
APIs will be used.

• So today installation is often provoked by a
plug and play discovery event based on the
familiar USB style device discovery.

• So the COM ports added into the PC system
and accessed in a standard way.

• Configuration via the Control Panel or
increasingly by a web interface.

Users Application

Windows API

Open….
Tx Data

Status
Rx Data

Ethernet
Transport
Driver

USB
Transport
Driver

Ethernet
Serial Device

USB
Serial Device

PCI Express
Serial Device

Brainboxes Device Driver

Traditional COM Port Interface

• Our software gives your
applications a true COM
port interface and handles
all the issues about
transport layers, latency
and connection protocols.

• Allows you to keep making
a return on your proven
existing software
investment.

• Upgrade to a new
connection topology
without any fuss.

Latency

• Each layer has its own standardised way of
communicating configuration information,
serial port data and status information.

• As the data passes up and down the layers
from the Application to the physical serial
port these processes can add delays:-

– Packetising of data to improve throughput

– Data decoded from one standard and re
encoded in the next standard.

– The actual transfer of data across an interface

– The serialising of the data as it is transmitted
or received

• This total delay is called the latency.

• Typically the larger the packet of
data being transferred the less import
the latency becomes when expressed
as a % of the total transfer time.

Users Application

Windows API

Open….
Tx Data

Status
Rx Data

Ethernet
Transport
Driver

USB
Transport
Driver

Ethernet
Serial Device

USB
Serial Device

PCI Express
Serial Device

Brainboxes Device Driver

1 milli sec=
1 char times
at 9600 baud

1 milli sec=
1 char times
at 9600 baud

Contents

• Overview

• Background To Serial Communications

• Latency and Response Times

• The Software Challenge

• PCI and PCI Express to Serial

• USB to Serial

• Ethernet to Serial

• Summary

• Recommendations

PCI & PCI Express Serial Journey

• In mid 1990s PCI Serial Cards were introduced as successor
to ISA to Serial cards issues caused initial low take up rates
because of:-

– Software compatibility broken due to PC automatically
assigning irq and i/o addresses not compatible with ISA cards,
re write of huge number of legacy serial application programs
necessary.

– Plug and Play was nicknamed Plug and Pray

– Higher cost due to extra circuitry of implementing PCI bus.

– Slots not available in all PCs.

– Confusion over PCI and PCI-X, PCI-66 and 5Volt, 3Volt or
Universal slots

• PCI to PCI Express transition in 2007-9 avoids all these
issues.

– However initial higher cost of these higher technology devices
and the fact that full size desktops are no longer the highest
volume PC products hinders early adoption.

PCI Express Serial Journey

• In 2010 PCI Express to Serial devices are widely
accepted method for full size desktop PC
connection because of:-

– Benchmark for software compatibility

– May be bandwidth throttled by wait states on PCI/PCI
Express bus between UART transactions for large COM
Port count installations.

– Lowest latency and best response of any serial device

– Good quality Device Drivers from established serial port
specialists like Brainboxes.

– De facto standard regarding installation and
configuration

– Excellent solution requiring no learning curve

– Very cost effective with low chip count devices.

Contents

• Overview

• Background To Serial Communications

• Latency and Response Times

• The Software Challenge

• PCI and PCI Express to Serial

• USB to Serial

• Ethernet to Serial

• Summary

• Recommendations

USB Serial Journey

• In July 1998 Microsoft introduced Windows 98, this
provided built in support for USB 1.0 devices, a feature
that was lacking in the hugely popular Windows 95.

• USB driving goals ease of use and absolute low cost.

• Due to the disappearance of on board serial ports low
cost USB to Serial port devices start becoming popular.

• However only less than 50% of applications worked and
USB to Serial devices gained a reputation for being
unreliable. The root cause of this was a combination of

– Low USB 1.0 achievable maximum bandwidth 12Mb/s
shared between all devices if sub 1GHz PCs can deliver it.

– Poor implementation of the Device Driver by non specialist
serial device manufacturers

– Incomplete and low performance early hardware
implementations

USB Serial Journey

• In 2010 USB to Serial devices are extremely
robust and very well received in the market
even for critical applications that previously fell
over due to:-
– Higher bandwidth USB 2.0 480Mb/s – a 12Mb/s link is
easily sustained

– Higher performance host PC eg multi core each 2 or
3GHz can more than adequately service USB 2.0

– 3rd or 4th generation higher performance USB to Serial
peripheral hardware

– Good quality Device Drivers from established serial
port specialists like Brainboxes.

• Unfortunately many customers who had poor
experiences with early USB serial devices have
written the technology off and have moved on
to other solutions.

Contents

• Overview

• Background To Serial Communications

• Latency and Response Times

• The Software Challenge

• PCI and PCI Express to Serial

• USB to Serial

• Ethernet to Serial

• Summary

• Recommendations

Ethernet Serial Journey
• Late 1990s Ethernet to Serial devices first introduced in

an industrial environment.

• Not widely accepted due to a combination of
– Programs not working due to hidden

dependencies/assumption.

– Wide spread use of Hubs which flood all segments of the
network with all network traffic causing congestion.

– maximum bandwidth 10Mb/s shared between all devices on
network

– Long network latency

– Poor implementation of the Device Driver by non specialist
serial device manufacturers

– Incomplete and low performance early hardware
implementations

– Big learning curve for average users requiring having to
understand many issues at the System Administrator level

– No plug and play, no web page configurations

– High cost devices

Ethernet Serial Journey

• In 2010 Ethernet to Serial devices are widely accepted as THE
method of controlling serial equipment in an industrial
environment because of:-

– Re written programs due to better understanding of networking
remote serial devices

– Wide spread use of Switches which isolate network traffic effectively
ensuring point to point communications.

– maximum bandwidth 100Mb/s shared but effectively much greater
due to widespread use of Switches between all devices on network

– Low network latency

– Good quality Device Drivers from established serial port specialists
like Brainboxes.

– Backwards compatibility of Windows device drivers greatly reduce the
learning curve

– Easier configuration using Universal Plug and Play and can be
managed with a browser via web page interface.

– Very Cost effective devices due to using high performance, highly
integrated microcontrollers.

Contents

• Overview

• Background To Serial Communications

• Latency and Response Times

• The Software Challenge

• PCI and PCI Express to Serial

• USB to Serial

• Ethernet to Serial

• Summary

• Recommendations

Summary

Interface PCI PCI Express 1.0 USB 1.0 USB 2.0 Ethernet
Type Bus Point to Point Bus Bus Bus
Full Duplex No Yes No No No
Slave or Master Slave Slave Slave Slave Master
Raw Bit Rate 266 Mega b/s 2.5 Giga b/s 12 Mega b/s 480 Mega b/s 100 Mega b/s
Distance to Host PC Internal Internal 5 metre 5 metre 500 metres
Latency 1mS 1mS 100mS 16-75mS 5-20mS
Processor PC CPU PC CPU 8 Bit Micro 8 Bit Micro 32 bit ARM
Clock Speed 2GHz PC CPU 2GHz PC CPU 6MHz 6MHz 50MHz
Hot Plug No No Yes Yes Yes
Cost Medium Medium Low Low Medium

Contents

• Overview

• Background To Serial Communications

• Latency and Response Times

• The Software Challenge

• PCI and PCI Express to Serial

• USB to Serial

• Ethernet to Serial

• Summary

• Recommendations

Recommendations

• Price
– There is no significant difference between prices of the individual interface units suitable for an

industrial environment irrespective of connection methodology.

• PC Choice
– A PCI/PCI Express solution requires a PC with appropriate internal expansion slot at higher cost.
– USB and Ethernet solutions can be used with the lower cost Ultra Small Form Factor PC.

• Ease of cabling
– Ease and price of implementing the different cabling options must be considered.

A PCI/PCI Express solution can use existing cabling.
– A USB solution can also use the existing cabling.
– An Ethernet solution would require provision of new switches and Ethernet cabling.

• Considerations
– The company strategy regarding long term topology of the manufacturing system should be the

guiding light in making choices going forward.
– There is no budget nor time available for long validation testing and customer does not desire

any downtime or production scrap. Thus only systems with the highest supplier confidence must
be chosen and any incremental cost incurred considered as the price of ensuring greatest
confidence.

– USB to Serial has no track record of use in similar environments despite it being the lowest cost
solution, it has the highest latency and so may be most likely to fall foul of timing matters.

• Recommendations
– PCI/PCI Express is well attested in this environment and is a powerful contender.
– Ethernet to Serial is well proven in this environment and is the recommended interface of

choice even though the initial cost of cabling is the highest as this system delivers the best long
term benefits and highest proven reliability.

Conclusions

• Serial ports are here to stay, for at least another 10
years.

• The market will continue to grow at better than 10%
per year.

• Increasingly serial devices are being connected using a
wide variety of physical connection mechanisms whilst
at the same time requiring a simple, common software
interface to allow applications to work robustly.

• Brainboxes will supply hardware & software products
in all the different market segments you require to
meet these demands.

Your Data, Any Connection, Any Device

• Make Brainboxes your technology partner for any and all your Serial
connections

• Connect, Configure, Control your serial ports no matter what
computing equipment you have, no matter how it is connected.

• Serial connectivity products of every kind with full software support
and technical backup

